Studies of Silyl and Germyl Group 6 Species. *5.'* **Silyl and Germyl Derivatives of Methane- and Benzenetellurols**

JOHN E. DRAKE*^{2a} and RAYMOND T. HEMMINGS*^{2b}

Received December **7, I979**

The silyl and germyl derivatives of methane- and benzenetellurols H_3MTeR ($M = Si$, Ge ; $R = CH_3$, C_6H_5) and the methylated analogues (\overrightarrow{CH}_3) ₃MTeR (M = Si, Ge, Sn; R = CH₃, C₆H₅) have been prepared and characterized. The synthetic routes include reactions of halides with lithium organotellurolates and trimethyl(organotelluro)silanes. The spectroscopic properties of these species are reported and discussed. Tellurophenol, C_6H_5TeH , is identified in the hydrolysis of trimethyl(phenyltel1uro)silane.

We recently reported the characterization of some simple silyl and germyl organoselenium derivatives of the type H_3M SeR (M = Si, Ge; R = CH₃, C₆H₅) and (CH₃)₃MSeR $(M = Si, Ge, Sn; R = CH₃, C₆H₅)^{3,4}$ analogous to the methoxy- and (methylthio)silanes^{$5^{-/-}$} and -germanes.^{5,8-10} Studies of silyl- and germyltellurium species are comparatively scant. The symmetrical hydridic tellurides $(H_3Si)_2Te$ and $(H_3Ge)_2Te$ have been reported^{11,12} and appear to be far less stable than the corresponding organo-substituted species $(R_1M)_2Te (M = Sh^{11,13-15} Ge¹⁵⁻¹⁷ Sn^{15,16,18,19} R = CH₃, C₂H₃$ C_6H_5). Reports of organotellurium group 4 derivatives are limited to fully substituted R_3MTeR' ($R = R' = C_2H_3$) species, $15,18,20,21$ In the present study the formation of the hydrides H_3 SiTeC H_3 , H_3 SiTeC $_6H_5$, H_3 GeTeC H_3 , and H_3 - $GeTeC₆H₅$ and their methylated analogues is described by using synthetic routes derived from earlier work.

- (I) Part 4: **J.** E. Drake, B. Glavincevski, and R. T. Hemmings, submitted for publication in *Can. J. Chem.*
- (2) (a) University of Windsor. (b) University of Toronto.
- (3) (a) J. W. Anderson, *G.* K. Barker, J. **E.** Drake, and M. Rodger, *J. Chem. Soc., Dalton Trans.,* 1716 (1973); (b) *G.* K. Barker, J. **E.** Drake, and R. T. Hemmings, *ibid.,* 450 (1974).
- (4) **J.** E. Drake and R. T. Hemmings, *J. Chem. Soc., Dalton Trans.,* 1730 (1976).
- E. W. Abel and **D. A.** Armitage, *Ado. Organomet. Chem.,* 5, 1 (1967).
- G. S. Weiss and E. R. Nixon, *Spectrochim. Acta,* 21, 903 (1965); B. Sternbach and A. G. MacDiarmid, *J. Am. Chem. Soc.*, 83, 3384 (1961); 81, 5109 (1959).
- B. Sternbach and A. *G.* MacDiarmid, *J. Inorg. Nucl. Chem.,* 23, 225 (1961).
- S. Cradock, *J. Chem. SOC. A,* 1426 (1968).
- G. A. Gibbon, Y. Rousseau, C. H. Van Dyke, and G. J. Mains, *Inorg. Chem.,* 5, 114 (1966); *G.* A. Gibbon, J. T. Wang, and C. H. Van Dyke, *ibid.,* 6, 1989 (1967).
- J. T. Wang and C. H. Van Dyke, *Inorg. Chem,,* 7, 1319 (1968).
- H. Burger and U. Goetze, *Inorg. Nucl. Chem. Lett.,* 3, 549 (1967).
- S. Cradock, E. A. V. Ebsworth, and D. W. H. Rankin, *J. Chem. Soc. A,* 1628 (1969).
- *K.* A. Hooton and A. L. Allred, *Inorg. Chem.,* 4, 671 (1965).
- H. Burger, U. Goetze, and W. Sawodny, *Spectrochim. Acta,* 24,2003 (1968).
- M. N. Bochkarev, L. P. Sanina, and N. S. Vyazankin, *Zh. Obshch. Khim.* 37, 1037 (1967); 38, 414 (1968); 39, 135 (1969).
- (16) H. Schumann, R. Mohtachemi, H. J. Kroth, and U. Frank, *Chem. Ber.,* 106, 2049 (1973).
- (17) H. Schumann, **K.** F. Thom, and H. Schmidt, *J. Organomet. Chem.,* 4, 22 (1965).
- (18) M. N. Bochkarev, L. P. Sanina, and **N.** S. Vyazankin, *Zh. Obshch. Khim.,* 36, 166, 1154 (1966); 38, 1800 (1968); 39, 135 (1969).
- (19) **H.** Schumann, K. F. Thom, and H. Schmidt, *Angew. Chem* , 75, 138 (1963); *J. Organomet. Chem,* 2, 361 (1964)
- (20) A. N. Egorochkin, E. N. Gladyshev, *S.* Ya Khorshev, P. Ya Bayushkm, A. I. Burov, and N. S. Vyazankin, *Izu. Akad. Nauk SSSR,* 639 (1971)
- (21) A. N. Egorochkin, M. N. Bochkarev, N. *S.* Vyazankin, S. E. Skobeleva, and S. Ya Khorshev, *Dokl. Akad. Nauk SSSR,* 198, *96* (1971).

Results and Discussion

In earlier work^{3,4} we showed that the synthesis of organoselenium group 4 species containing the C-Se-M ($M = Si$, Ge, Sn) skeleton could be achieved by forming the C-Se linkage before the Se-M linkage. In this sequence the C-Se moiety was present in either organoselenolates, LiSeR $(R =$ CH_3 , C_6H_5 , or organoselenoaluminates, LiAl(SeR)₄, which underwent facile salt elimination with halosilanes. We find that this approach is also applicable to the synthesis of the analogous organotellurium species in only slightly lower overall yield.

As reported by other workers²² we find that elemental tellurium readily inserts into the C-Li bond of organolithium reagents to form the organotellurolates lithium methanetellurolate, LiTeCH,, and lithium benzenetellurolate, LiTe- C_6H_5 (eq 1). The tellurolates were not isolated, and attempts of the workers²² we firm
the C-Li bond
the organotellurolates
 H_3 , and lithium benzent
tellurolates were not isol.
Te + LiR $\frac{THF}{100}$ LiTeR
R = CH₃, C₆H₅

$$
Te + LiR \xrightarrow{THF} LiTeR
$$

$$
R = CH_3, C_6H_5
$$
 (1)

to completely remove tetrahydrofuran from these species were unsuccessful, suggesting that in the crystalline state there may be coordination with this solvent. However, their subsequent reaction in situ with trimethylchlorosilane gave satisfactory yields (>60%) of the expected (methyltelluro)- and (phenyltel1uro)trimethylsilanes (eq **2).** Earlier attempts to form mpletely remove tetrahydroturan from these species v
cccessful, suggesting that in the crystalline state there is
oordination with this solvent. However, their subseque
tion in situ with trimethylchlorosilane gave satisfa

$$
(CH3)3SiCl + LiTeR \xrightarrow{25 \text{ °C}} (CH3)3SiTeR + LiCl
$$

R = CH₃, C₆H₅ (2)

the C-Te-Si species by reaction of trimethylchlorosilane with the telluro Grignard reagent C_6H_5T eMgBr gave only the symmetric disproportionation product bis(trimethylsily1) telluride, $[(CH₃)₃Si]₂Te$, in low yield.¹³

The comparative salt elimination method using complex aluminates of the type LiAl(TeR)₄ was unsuitable²³ due to the instability of the required organotellurol, RTeH, precursors. 24 For this reason the protolytic cleavage of silicon and germanium carbodiimides with organotellurols was not attempted although corresponding reactions with organoselenols have proved synthetically viable. $4,25$

- (22) N. Petragnani and M. de Moura Campos, *Chem. Ber.,* 96,249 (1963); J. L. Piette and M. Renson, *Bull. SOC. Chim. Belg.,* 79, 353, 367, 383 (1970); D. Seebach and A. K. Beck, *Chem. Ber.,* 108, 314 (1975).
- (23) J. W. Anderson and J. E. Drake, *Inorg. Nucl. Chem. Lett.,* 7, 1007 (1971).
- (24) K. **J.** Irgolic, "The Organic Chemistry of Tellurium", Gordon and Breach, New York, 1974, **p** 56.
- (25) J. E. Drake, B. M. Glavincevski, R. T. Hemmings, and H. E. Henderson, *Synth. React. Inorg. Met.-Org. Chem.,* 8, 7 (1978); J. E. Drake, R. T. Hemmings, and H. **E.** Henderon, *J. Chem. Soc., Dalton Trans.,* 366 (1976).

	δ (CH ₃)	δ (MH')	δ (CH ₃ ')	$\delta(C_6H_5)$	J(CH')			J [(TeMCH)
compd					\mathbf{M}	Te	J(TeCH)	(vic)
H' ₃ SiTeCH ₃ ' ^b $H'_{2}Si(TeCH_{3})_{2}$		3.89 4.70	1.64 1.67			146.7	22.3(2)	
H' ₃ SiTeC ₆ H ₅ }		3.99		7.13				
H'_2 Si(TeC ₆ H ₅) ₂ $(\tilde{CH}_3)_3$ SiTeCH 3^7 ^c		4.72		7.72				
$(CH_3)_3$ SiTeC ₆ H ₅ }	0.56 0.47		1.49	7.15	120.3 121.8	141.8	18.4(8)	7.2(3) 7.2(9)
H', GeTeCH, 'd		3.75	1.73	7.76		146.1	22.0(0)	
H' ₃ GeTeC ₆ H _s ^e $\{$		3.87		7.14				
$(CH_3)_3$ GeTeCH ₃ ' c	0.68		1.52	7.75	127.3	142.1	19.1(4)	5.2(8)
$(CH_3)_3$ GeTeC ₆ H ₅ $\{$	0.59			7.05 7.68	129.3			6.0(1)
$(CH_3)_2$ Ge(TeCH ₃ ') ₂ (CH ₃) ₃ SnTeCH ₃ 'c,f	1.21 0.53		1.67 1.55		131.6 133.2	138.6 142.9	20.8(9) 21.9(0)	4.9(4) ca. 3.1
(CH_3) , SnTeC ₆ H ₅ ^g }	0.46			7.10	133.9			i
(CH_3) , PbTeCH, h	ca. 1.4		ca. 1.8	7.81				

Table I. ¹H NMR Parameters^a of the Methyltelluro and Phenyltelluro Species

^a The spectra were recorded at ambient temperature in C₆H₁₂ solution (ca. 5% v/v). Chemical shifts are in ppm to low field of tetramethylsilane. Coupling constants (¹³CH, ²⁹SiH) are ±0.1 Hz. $bJ(SiH) = 219.9$ Hz; $J[(T \text{eSiH})(gem)] = 27.5$ (4) Hz. ^c CCl_a solution. ^d J[(TeGeH) (gem)] = 19.8 Hz. ^{*e*} J[(TeGeH)(gem)] = 21.9 (3) Hz. ^{*f*} J[(SnH)(gem)] = 57.5 (3) Hz for ¹¹⁹Sn and 54.9 (3) Hz for ¹¹⁷Sn; J[(SnH)(vic)] = 28.47 Hz for ¹¹⁹Sn and 27.33 for ¹¹⁹Sn. $\frac{g}{S}J[(SnH)(gem)]$ 57.6 (3) Hz for ¹¹⁹Sn and 55.0 (8) Hz for ¹¹⁷Sn. $\frac{h}{S}J[(PbH)(gem)] = ca.65$ Hz. $ⁱ$ Not observed.</sup> $J(SiH) = 219.9 \text{ Hz}; J[(\text{TeSiH})(\text{gem})] = 27.5 \text{ (4)} \text{ Hz}.$

Reactions similar to (eq *2)* also occur with halogermanes and -stannanes but the well-established silyl-germyl/silylstannyl exchange reaction^{3,4,26} provides a more convenient route to the germanium and tin derivatives. Rapid and essentially quantitative exchange occurs when organotellurosilanes and fluorogermanes (eq 3) or chlorostannanes (eq 4) are mixed at room temperature. t room temperature.
 $(CH_3)_3$ SiTeCH₃ + H₃GeF \rightarrow H₃GeTeCH₃ +(CH₃)₃SiF

$$
(CH3)3SiTeCH3 + H3GeF \rightarrow H3GeTeCH3 + (CH3)3SiF
$$
\n(3)

$$
(CH3)3SiTeC6H5 + (CH3)SnCl \rightarrow (CH3)3SiTeC6H5 + (CH3)3SnTeC6H5 + (CH3)3SiCl (4)
$$

Attempts to prepare SiH_3 derivatives using bromosilane in reaction 2 with the tellurolates were unsuccessful even at low temperatures. Typically, less than *25%* of the silicon was recovered (as volatile silane and disilyl telluride), the remainder being present in intractable polymeric material. Pure samples of the hydrides H_3 SiTeC H_3 and H_3 SiTeC₆H₅ were obtained from the unusual exchange reaction of iodo- or bromosilane with the appropriate trimethylsilyl derivative (eq 5). In the $H_3SiX + (CH_3)_3SiTeR \rightarrow H_3SiTeR + (CH_3)_3SiX$

$$
H_3SiX + (CH_3)_3SiTeR \rightarrow H_3SiTeR + (CH_3)_3SiX
$$

$$
X = Br, I; R = CH_3, C_6H_5
$$
 (5)

absence of reliable thermochemical data for the silyl/trimethylsilyl system it appears that the $(CH₃)₃Si$ group in these reactions is acting as a "harder" acid (in the Pearson²⁷ sense) than the H,Si group. More work is clearly needed to clarify the electronic effects affecting these systems.

The tellurides are all sparingly volatile, pale yellow liquids with characteristic foul persistent odors. When pure, they are stable for long periods at room temperature in sealed glass tubes. Like the selenosilanes^{3,4} the tellurosilanes are particularly labile to protolytic cleavage. With HBr, HI, H_2O , and

 $CH₃OH$ the Si-Te bond is cleaved to give the corresponding halosilane, siloxane, and methoxysilane, respectively, and organotellurol byproduct (e.g., eq 6). This type of reaction $(CH_3)_3STPC_6H_5 + H_2O \rightarrow [(CH_3)_3Si]_2O + C_6H_5TH$

$$
[CH3)3SiTeC6H5 + H2O \rightarrow [(CH3)3Si]2O + C6H5TeH
$$
\n(6)

may prove useful in the synthesis of arenetellurols which are not accessible by conventional methods.24

On prolonged storage or in contact with laser excitation (488 nm) the fully organo-substituted derivatives $(CH₃)₃MTER$ show some disproportionation to the symmetric tellurides (e.g., eq 7). The parent hydrides, H_3MTeR , have alternative de-
2(CH₃)₃SnTeCH₃ \rightarrow [(CH₃)₃Sn]₂Te + (CH₃)₂Te (7)

$$
2(CH_3)_3 \text{SnTeCH}_3 \to [(CH_3)_3 \text{Sn}]_2 \text{Te} + (CH_3)_2 \text{Te} \tag{7}
$$

composition routes. (Methyltelluro)germane undergoes slow conversion to digermyl telluride and dimethyl telluride (eq 8a) while the competing condensation reaction seems to be more favorable for the silyl analogue *(eq* 8b). We have noted earlier Examples to digermyl telluride and dimethyl telluride (eq 8a)

while the competing condensation reaction seems to be more

favorable for the silyl analogue (eq 8b). We have noted earlier
 $\frac{M = 6e}{(H_3M)_2T e_1 + (CH_3)_2T e_2}$

$$
2H_3MTECH_3 \n\begin{array}{c}\nM = 9e \\
(H_3M)_2Te + (CH_3)_2Te \\
\hline\nM = Si \\
H = M/T_3CH_2 + MH_1. \n\end{array}
$$
\n(8a)

that $(H_3Ge)_2$ Se decomposes to $H_2Ge(SeGeH_3)_2$, HGe(Sesimilar reactions occur with $H_3GeSeGeMe_3$ to give Me₃GeH and $GeH₄$ along with condensation products.²

'H NMR Spectra. The organotellurol derivatives all give first-order spectra (Table I) consistent with free rotation about the C-M and M-Te bonds. The chemical shifts (δ) and coupling constants *(J,* Hz) correlate well with those of previously reported tellurosilanes¹¹ and -germanes¹² and provide the initial confirmation of the molecular species. The data obtained in the present work complete earlier studies of mixed

⁽²⁶⁾ E. **A.** V. Ebsworth, **A.** G. Lee, and G. M. Sheidrick, *J. Chem Soc. A,* 2294 (1968).

⁽²⁷⁾ R. G. Pearson, *J. Am. Chem.* Soc., *85.* 3533 (1963).

⁽²⁸⁾ J. E. Drake and C. Riddle, *J. Chem. Soc. A,* 1573 (1969).

⁽²⁹⁾ J. **E.** Drake, B. **M.** Glavinceski, and R. T. Hernmings, *J. Inorg. Nucl. Chem.,* **41,** 457 (1979).

Table II. Raman Spectra (cm⁻¹) of the Methyltelluro Species (Liquids)^{a}

H_3 SiTeC H_3^b	$(CH_3)_3$ SiTeCH ₃ ^c	H , $GeTeCH$,	(CH,), GeTeCH,	(CH_3) , SnTeCH,	tentative assignt
$3014 \text{ w}, dp$	$3018 \text{ w}, dp$	$3015 \text{ w}, \text{dp}$	3013 sh, dp		asym (Te)
$2935 \text{ m}, p$	2939 s. p	$2937 \text{ m}, \text{ p}$	2936 s, p	$2938 \text{ m}, \text{ p}$	sym (Te) ν CH ₂)
	2957 m , dp		2978 m, dp	2988 br, dp	asym(M)
	$2900 \text{ vs. } p$		$2908 \text{ vs. } p$	$2919 \text{ m}, \text{ p}$	sym (M)
2171 sh, dp		2081 sh			(asym $\nu(MH_3)$
2148s, p		2070 s, p			sym
1417 vw. dp	1413 w, dp	1415 w, dp	1416 br. dp	1403 vw	asym (Te, M)
$1221 \text{ w}, p$	$1219 \text{ m}, p$	1222 w, p	$1216 \; m, p$	$1214 \text{ m}, \text{ p}$	δ (CH ₃) sym (Te)
	$1258 \text{ w}, p$		$1240 \text{ m}, p$	$1187 \; m, p$	sym(M)
920 vw, dp		851 w			asym
871 vw, p		781 w			$\{\delta(MH_2)\}$ sym
	842 w	877 w	826 w	ca. 838 vw	(TeM)
	750 w		755 vw ca.	770 vw ca.	ρ (CH ₃) (M)
	697 w, dp		$600 \text{ m}, \text{dp}$.	522 m , dp	asym
	$618s$, p		561 vs, p	507 s, p	$\nu(MC)$ sym
557 w		504 sh ca.			$\rho(MH_*)$
$513s$, p	514 vs, p	520 s, p	507 vs, p	d	ν (CTe)
340 vs, p	326 vs, p	$239 \text{ vs. } p$	226 vs, p	184 vs, p	$\nu(MTe)$
	231 m, dp		191 sh		asym
	187 vs, p		173 vs, p	$138s$, p	$\{ \delta(MC_2) \}$! svm
	ca. 165 sh		158 sh ca.	109 sh	$\rho(MC_2)$
140 _m		138 m	135 sh ca.		δ (CTeM)
			113 w		

a Key: w, weak; m, medium; **s,** strong; **v,** very; sh, shoulder; p, polarized; dp, depolarized. All spectra were recorded at room temperature. Bands in the gas-phase IR spectrum were observed at ν (CH₃) 3026 w and, 2949 wm, ν (SiH₃) 2167 vs and 2155 vs, δ (CH₃) 1430 w and 1231 m, $\delta(SiH_3)$ 959 s and 885 vs, ρ (CH₃) 865 w, and $\rho(SiH_3)$ 559 m. ^c Bands in the gas-phase IR spectrum were observed at ν (CH₃) 3027 w, 2967, and 2915 m, 6(CH,) 1414 br, 1261 **s,** and 1231 m, p(CH,) 850 vs and 759 m, v(SiC) 697 m, and 627 m, u(SiTe) 344 m, and &(Sic,) 248 w. a Line contained in $\nu(SnC)$ envelope (see text).

group 4-group 6 systems of the types H_3MER and (CH_3) , MER {M = Si, Ge, [Sn]; E = O, S, Se, Te; R = CH₃, C_6H_5 . In the hydride series, H₃MER, the MH₃ α -proton shifts show typical trends apparently related to σ -bond induction by the group 6 element [E]: e.g., $\delta[H_3SIECH_3]$ 4.52 [O], 4.29 [S], 4.15 [Se], 3.89 [Te]; δ[H₃GeECH₃] 5.12 [O], 4.48 [S], 4.19 [Se], 3.75 [Te]^{3b,9,10,30} Similar trends extend to the phenyl derivatives.^{4,31} By comparison the CH₃ β -proton shifts in the (CH_3) ₃MER series show trends which are the reverse of those expected from the inductive effect of the chalcogen. These shifts appear to be related to the size of the substituent E and hence attributable³² to second-order effects such as magnetic anisotropy and van der Waals or dispersion forces: e.g., δ [(CH₃)₃SiECH₃] 0.07 [O], 0.27 [S], 0.36 [Se], 0.56 [Te]; $\delta[(\tilde{C}H_3)\tilde{G}eECH_3]$ 0.27 [O], 0.51 [S], 0.55 [Se], 0.68 [Te]. 3a,13,25,33

Similar features are observed for the shifts of the $CH₃Te$ protons. Thus for the series $(CH_3)_3MTeCH_3$ there is progressive deshielding of the $CH₃Te$ protons with increasing atomic number of the group 6 element [M], viz., δ 1.49 [Si], 1.52 [Ge], 1.55 [Sn], 1.8 [Pb]. For series such as H_3MECH_3 and (CH_3) , MECH₃ the effect of changing the chalcogen [E] on the $CH₃E$ resonance is again apparently controlled by σ -bond induction by E: e.g., $\delta[H_3GeECH_3]$ 3.49 [O], 2.05 [S], 1.95 [Se], 1.73 [Te];^{3b,9,10} δ [(CH₃)₃SiECH₃] 3.35 [O], 1.93 [S], 1.70 [Se], 1.73 [Te].^{3a,13,32}

The aromatic resonances in the tellurophenols resemble those in the selenophenols;⁴ viz., two envelopes are resolved, the low-field set (intensity 2) being attributable to meta protons and the high-field set (intensity **3)** to ortho and para protons; and similar M-Te (p-d) π interactions are suggested by the similarity of the ortho/para proton shifts in the silicon, germanium, and tin species. Our studies of the selenium and tellurium derivatives now indicate that it is unlikely that the

-
-

(33) H. Vahrenkamp, and H. Noth, *J. Orgunomel. Chem.,* **12,** 281 (1968).

observation of a single aromatic resonance envelope in the thiophenols is an indicator of negligible aromatic ring-ligand interaction as proposed earlier.³¹

In both series satellites were observed due to proton coupling with the magnetic isotope of tellurium (¹²⁵Te, $\bar{I} = \frac{1}{2}$, 6.99%), indicating that under the condiitons of study there is no rapid exchange of silyl, germyl, or stannyl groups. There is no obvious trend in the 29Si-H coupling constants in the silyl species H₃SiECH₃: viz., 216.2 [O], 218.5 [S], 216.4 [Se], 219.9 [Tel Hz.

Raman Spectra. The observed frequencies for the methyltelluro and phenyltelluro species are given in Tables I1 and 111. The assignments are made by assuming unhindered rotation about the C-Te bond and are based on earlier studies of the selenium analogues^{3,4} and related tellurium-containing molecules, viz., $(\bar{H}_3 M)_2 Te$ (M = C,³⁴ Si,¹¹ Ge¹²), $[({\rm CH}_3)_3{\rm M}]_2$ Te (M = Si, ¹⁴ Ge, ¹⁶ Sn¹⁶), and CH₃TeH.³⁵

In the (methyltelluro)silanes and -germanes (Table II) polarized lines in the low-frequency region of the spectrum are unambiguously assigned to skeletal stretching fundamentals: viz., ν (CTe) ca. 510 cm⁻¹; ν (CM) 697 and 618 [Si], 600 and 561 [Gel cm-I; v(MTe) 326 [Si], 226 [Gel, 184 [Sn] cm⁻¹. In the tin species $(CH_3)_3$ SnTeCH₃, ν (CTe) and ν (CSn) are accidentally degenerate and are both assigned to an unresolved envelope centered at 507 cm-I. Other spectral lines are in typical regions expected for the functional groups present. **A** preliminary normal-coordinate analysis of the hydride species H_3MTeCH_3 (M = Si, Ge) indicates that there is little mixing of force constants for the skeletal modes.³⁶ The experimental frequencies are reproduced by using force constants of 1.533 and 1.576 mdyn **A-'** for Si-Te and Ge-Te stretchings, respectively.

By comparison, the phenyltelluro derivatives exhibit more complicated spectra, but following the approach used earlier

- (35) C. W. Sink and A. B. Harvey, *J. Chem. Phys.,* **57,** 4434 (1972).
- (36) **A.** J. F. Clark, private communication.

⁽³⁰⁾ C. H. Van Dyke and A. G. MacDiarmid, *Inorg. Chem.*, 3, 1071 (1964).
(31) C. Glidewell and D. W. H. Rankin, J. Chem. Soc. A, 753 (1969).
(32) E. A. V. Ebsworth in "Organometallic Compounds of the Group IV
Elements", V York, 1968.

⁽³⁴⁾ J. R. Allkins and P. **J.** Hendra, *Spectrochim. Acta,* **22,** 2075 (1966); G. C. Hayward and P. J. Hendra, J. Chem. Soc. A, 1760 (1969); J. M.
Freeman and T. Henshall, J. Mol. Struct., 1, 31 (1967); J. R. Durig,
C. M. Player, J. Bragin, and Y. S. Li, J. Chem. Phys., 55, 2895 (1971).

a See footnote to Table II. Lines attributable to the substituent-insensitive phenyl modes were observed at ν (CH) 3052 m, p *(z),* ν (CC) 1573 m, dp *(k)*, 1475 vw *(m)*, 1440 vw *(n)*, and 1330 vw *(o)*, β (CH) 1186 w, p *(a)*, 1154 w, dp *(c)*, 1017 m, p *(b)*, and ring 998 vs, p *(p)*, γ (CH) 901 (vw) *(i)*, 840 (vw) *(g)*, and 742 (vw) *(f)*, α (CCC) 617 w, dp (s), ϕ (CC) 399 vvw (w), and combinations 3143 w, p (2k), 1611 (s + p), 1380 (2v), and 1285 w, p (?). ^b Italic letters in parentheses denote Whiffen notation for monosubstituted benzenes.³⁸ ^c Envelope may contain δ (CTeSi). α Envelope may contain X-sens (u) . β Envelope may contain X-sens (x) .

for the selenium analogues⁴ the 24 substituent-insensitive phenyl ring vibrations may be correlated with the corresponding degenerate modes in benzene. 37 The 6 substituent-sensitive modes (X-sens in Table 111) may be assigned by comparison with the spectra of monosubstituted benzenes.³⁸ **As** would be expected these frequencies are close to those reported³⁸ for C_6H_5I . Frequencies arising from the MH₃ and $(\tilde{C}H_3)_3M$ groups are observed in similar regions for both methyltelluro and phenyltelluro series, the spectra being consistent with the expected local *C3u* symmetry at the group **4** atom M. The torsional modes were not observed for either series.

Experimental Section

Apparatus. The manipulation of all volatile/air-sensitive compounds was carried out in a greaseless Pyrex-glass vacuum/inert atmosphere system of conventional design.³⁹ The use of Teflon-in-glass highvacuum valves and minimum quantities of silicone-type lubricant for detachable glass joints in the apparatus reduced considerably the usual contamination problems²⁴ associated with volatile tellurium compounds. The allied spectroscopic techniques were as described previously.⁴

Materials. Silyl and germy1 halides were prepared by standard methods⁴⁰ and their purity established spectroscopically. Other materials were reagent grade of commercial origin. The silyl and germy1 groups in the tellurides were analyzed by reaction with hydrogen iodide.³¹

Preparation of Silyl Derivatives of Methane- and Benzenetellurols. (a) Reaction of Tellurium with Organohthium Reagents. In a typical experiment powdered tellurium (1.6651 g, 13.05 mmol) and methyllithium (ca. 16 mmol in diethyl ether) were allowed to react in dry tetrahydrofuran (THF) (15 mL) as described for $LiSeCH₃^{3a}$. The solvents were removed in vacuo after ca. 20 h, leaving a yellow-brown crystalline residue $(ca. 2.9 g)$ in the reaction vessel. Traces of $(CH₃)₂Te$ were identified³⁴ in the volatile material in some reactions. Attempts

(40) L. G. L. Ward, *Inorg. Synth.,* **11,** 159 (1968); S. Cradock, *ibid.,* **15,** 164 (1974); J. W. Anderson, G. K. Barker, A. J. F. Clark, J. E. Drake, and R. T. Hemrnings, *Spectrochim Acta,* **30,** 1081 (1974).

to recrystallize the crude lithium methanetellurolate, LiTeCH,, led to the formation of $(CH₃Te)$, and other unidentified tellurium-containing species resulting from solvent cleavage. The crude LiTeCH₃ also contained residual THF which could not be removed by prolonged pumping in high vacuum, suggesting possible ether coordination in the solid state. Fresh solutions of LiTeCH₃ in THF showed ν (CTe) at ca. 505 cm⁻¹ in the Raman spectrum and δ (CH₃) at 1.7 in the ¹H NMR spectrum. Treatment of a sample of LiTeCH, with HBr did not give CH₃TeH. Noncondensable gas was formed, and the NMR spectrum of the volatile products indicated the formation of $(CH_3Te)_2$ $[\delta(\text{CH}_3) 2.69, ^{41} \nu(\text{TeTe}) 190 \text{ cm}^{-1} 42]$, with additional weak resonances attributable to THF and unidentified higher telluroorganics. A similar reaction between tellurium (2.0813 g, 16.31 mmol) and phenyllithium (ca. 20 mmol in benzene/diethyl ether) led to the formation of lithium benzenetellurolate, LiTeC₆H₅ (ca. 3.9 g), as reported by other workers.22 This material was used without further purification.

(b) Reaction of Trimethylchlorosilane with Lithium Organotellurolates. Treatment of crude LiTeCH₃ (ca. 2.3 g) with (CH_3) ₃SiCl (ca. 15.7 mmol) at 25 \degree C produced a vigorous exothermic reaction during which the mixture turned from brown to off-white. After 1 h the volatile material was pumped from the reactor and bulk fractionated by using traps held at -45 and -196 °C. The contents of the former were recycled through further traps at -23 , -45 , and -196 ^oC. Pure samples of trimethyl(methyltelluro)silane, $(CH_3)_3$ SiTeCH₃ (9.64 mmol, 64%; vapor pressure ca. 3 torr at 25 °C; m/e 210-218, $P^+ = [C_4H_{12}SiTe]^+$. Anal. Calcd for $C_4H_{12}SiTe$: Si, 13.01. Found: Si (as $(\overline{CH_3})_3$ Sil), 12.7.), were recovered from the -45 °C trap, small quantities of $(CH_3)_4Si$, $[(CH_3)_3Si]_2O$, THF, and unchanged (C- \hat{H}_3)₃SiCl in the -196 °C traps, and dimethyl ditelluride and traces of the symmetrical species $[(CH₃)₃Si]₂Te⁽¹H NMR resonances at$ δ 2.7 and 0.60, respectively) in the -23 °C trap, both accounting for < 10% of the tellurium used in the reaction.

A similar reaction between $LiTeC₆H₅$ (ca. 3.9 g) and $(CH₃)₃SiCl$ (ca. 25 mmol) gave trimethyl(phenyltelluro)silane, $(CH_3)_3$ SiTeC₆H₅ (10.7 mmol, 66%; vapor pressure < torr at 25 °C; m/e 257-265, P⁺ $- 15 = [C_8H_{11}SeTe]^+$; δ (CH₃) 0.47. Anal. Calcd for C₉H₁₄SiTe: Si, 10.11. Found: Si (as $(CH₃)₃$ SiI), 9.1.), which was volatile at 80 °C in vacuo and small amounts of $(C_6H_5Te)_2$ and $[(CH_3)_3Si]_2Te$, together accounting for ca. 14% of the tellurium used in the reaction. The presence of LiC_6H_5 in the crude $LiTeC_6H_5$ was confirmed by

⁽³⁷⁾ N. Herzfeld, C. K. Ingold, and H. G. Poole, *J. Chem. Soc.*, 222, 235,
239, 244, 252, 272, 288, 299, 316 (1946); R. D. Mair and D. F. Hornig,
J. Chem. Phys., 17, 1236 (1949); F. A. Miller, *ibid.*, **24**, 996 (1956).

⁽³⁸⁾ C. V. Stephenson, W. C. Coburn, and W. S. Wilcox, *Spectrochim. Acta*, **17**, 933 (1961); D. H. Whiffen, *J. Chem. Soc.*, 1350 (1956).
(39) D. F. Shriver, "The Manipulation of Air Sensitive Compounds", McGraw-Hill, New

⁽⁴¹⁾ M. T. Chen and J. W. George, *J. Organornet. Chem.,* **12,** *401* (1968).

⁽⁴²⁾ C. W. Sink and A. B. Harvey, *J. Mol. Strucr.,* **4,** 203 (1969).

the recovery of $(CH_3)_3SiC_6H_5$ (ca. 3 mmol; $\delta(CH_3)$ 0.08).

Cleavage of the tellurosilanes with selected protic species was similar to that observed^{3a,4} for the selenosilanes; viz., $(CH_3)_3SiTeCH_3$ and CH30H gave (CH3),SiOCH3 **(95%),** (CH3),SiTeCH3 and HBr gave $(CH_3)_3$ SiBr (91%), and $(CH_3)_3$ SiTeC₆H₅ and H₂O gave $[(CH_3)_3$ Si]₂O **(92%).** The tellurol byproducts were not estimated due to their ready decomposition to the corresponding ditellurides, hydrogen, and in some cases metallic tellurium. Benzenetellurol, C_6H_5TeH , was observed qualitatively in the NMR spectrum of the hydrolysis products of $(CH_3)_3$ SiTeC₆H₅ [δ (TeH) -2.4 $(J(TeH) = 49.5 \text{ Hz})$].

(c) Reaction of Bromosilane with Lithium Organotellurolates. Treatment of a diethyl ether slurry of crude LiTeCH3 (ca. **0.4** g) with H₃SiBr (ca. 1 mmol) at -78 °C gave $(H_3Si)_2Te$ (ca. 20%) and traces of silane as the only volatile silicon species. Similarly, no (organotelluro)silane was recovered from the reaction of H₃SiBr and LiTe- $C_6H_5.$

Exchange Reactions of Trimethyl (organotelluro) silanes. (a) Re**actions with Fluorogermanes.** In a typical experiment fluorogermane **(1.60** mmol) and (CH,),SiTeCH, **(1.3 1** mmol) were allowed to react in an ampule (10 mL) at 25 °C (15 min). The products were fractionated by using baths at -23 and -196 °C. The former bath retained pure $H_3GeTeCH_3$ (1.22 mmol, 93%, m/e 212-224, P^+ = $[CH_6GeTe]^+$. Anal. Calcd for CH₆GeTe: Ge, 33.3. Found: Ge (as GeH_3 I), 30.4.); the latter bath contained a mixture of $(\text{CH}_3)_3\text{SiF}$ (ca. **1.2** mmol) and unchanged H,GeF (ca. **0.35** mmol), identified by ¹H NMR spectra.⁴³ In similar experiments $H_3GeTeC_6H_5$ (91%), (CH3),GeTeCH, **(87%),** and (CH,),GeTeC6H5 **(87%)** were obtained from a deficit of the (organotelluro)silane with the corresponding fluorogermane. With use of $(CH_3)_2GeCl_2$ (1.18 mmol) with excess of (CH₃)₃SiTeCH₃ (3.09 mmol) the disubstituted species (CH₃)₂-Ge(TeCH3), **[1.05** mmol, **89%;** 6(CH3) **1.21, 1.671** was isolated as a nonvolatile orange oil. Raman lines assigned as skeletal modes were observed as follows (cm^{-1}) : 599 (w, dp) and 567 (m, p) , $\nu(GeC_2)$; **514** (s, p), ν (CTe); 243 (m, dp) and 208 (vs, p), ν (GeTe₂); 192 (sh), 171 (vs, p), and 61 (vs, p), δ (GeTe₂). In a control experiment a 1:1 mixture of $(CH_3)_2$ GeCl₂ and $(CH_3)_3$ SiTeCH₃ gave only weak resonances at 1.21 and 1.67 ppm attributable to $(CH_3)_2Ge(TeCH_3)_2$ and strong additional lines at **1.30** and **1.74** ppm (integrated intensities 2:1) which we assign to the mixed chloro(methyltelluro) species $(CH₃)₂Ge(Cl)TeCH₃$. As found for other silicon- and germanium-

(43) H. Schmidbaur, *J. Am. Chem. Soc.,* **85,** 2336 (1963); E. **A.** V. Ebsworth, *S.* G. Frankiss, and **A. G.** Robiette, *J. Mol. Spectrosc.,* **12,** 299 (1966).

group 6 compounds,^{29,44} the value of $K_{25^{\circ}C}$ of 1.6 for the equilibrium mixture is significantly less than the statistical random value of **0.25.**

(b) Reactions with Chlorostannanes. Typically $(CH_3)_3$ SnCl (1.79 mmol) reacted smoothly with $(CH_3)_3$ SiTeCH₃ (2.05 mmol) at 25 °C (15 min) to give $(CH_3)_3$ SnTeCH₃ $(1.69 \text{ mmol}, 94%)$ as an involatile yellow oil. The volatile material contained only $(CH₃)₃SiCl$ and unchanged $(CH_3)_3$ SnCl as indicated by ¹H NMR spectra. Similarly $(CH_3)_3$ SnCl and $(CH_3)_3$ SiTeC₆H₅ gave $(CH_3)_3$ SnTeC₆H₅ (89%).

(c) Reactions with Halosilanes. Bromosilane **(0.66** mmol) and a deficit of $(CH_3)_3$ SiTeCH₃ (0.42 mmol) were sealed in a semimicro NMR tube. The NMR spectrum showed that no reaction had occurred after *5* min. After **15** min at **60** "C the NMR spectrum showed additional resonances in the ratio **1:l** at **3.8** and **1.6** ppm assigned to H3SiTeCH3 and a strong resonance at **0.57** ppm (intensity **3)** assigned to (CH₃)₃SiBr, corresponding to ca. 10% reaction. After 10 h at 60 °C no (CH₃)₃SiTeCH₃ remained and the tube was reopened on the vacuum line and the products were fractionated by using traps held at -45 and -196 °C. The latter trap contained unchanged \overline{H}_3 SiBr and (CH_3) , SiBr (molar ratio ca. 1:2) and the former trap (me-
thyltelluro)silane, H_3 SiTeC H_3 (0.38 mmol, 90%; *m/e* 170–176, P⁺ $\mathbf{F} = [\text{CH}_n\text{SiTe}]^+$). A similar qualitative experiment using H₃SiI and $(CH₃)₃SiTeCH₃$ showed complete exchange to $H₃SiTeCH₃$ and $(CH₃)$, SiI after 5 h at 60 °C. Cleavage of $H₃SiTeCH₃$ with HI gave H_3 SiI (87%). The exchange reaction between $(CH_3)_3$ SiTeC₆H₅ and iodosilane led to the formation of $H_3SiTeC_6H_5$ (78%).

Acknowledgment. We thank the National Research Council of Canada for financial support.

Registry No. H₃SiTeCH₃, 34117-15-2; **H₂Si(TeCH₃)₂, 73296-28-3;** H3SiTeC6H5, **73296-29-4;** H2Si(TeC6H5)2, **73296-30-7;** (CH3),Si-TeCH,, **341 17-12-9;** (CH3)3SiTeC6H,, **73296-31-8;** H,GeTeCH,, **341 17-16-3;** H3GeTeC6H5, **73296-32-9;** (CH3),GeTeCH3, **341 17-13-0;** (CH₃)₃GeTeC₆H₅, 73296-33-0; (CH₃)₂Ge(TeCH₃)₂, 73296-34-1; (CH,),SnTeCH,, **341 17-14-1;** (CH3)3SnTeC6H5, **73296-35-2;** (C-H₃)₃PbTeCH₃, 73296-36-3; LiTeCH₃, 60919-62-2; LiTeC₆H₅, **5225 1-60-2;** (CH3),SiCI, **75-77-4;** (CH3),SiBr, **2857-97-8;** [(C-H3)3Si]20, **107-46-0;** C6H,TeH, **69577-06-6;** (CH3),SiOCH,, **1825-61-2;** H,SiBr, **13465-73-1;** (H3Si)2Te, **19415-73-7;** H3GeF, **13537-30-9;** (CH,),GeF, **661-37-0;** (CH,)2GeC12, **1529-48-2;** (C-H3),Ge(CI)TeCH3, **73296-37-4;** (CH3),SnC1, **1066-45-1;** H,SiI, **13598-42-0.**

(44) K. Moedritzer and J. R. Van Wazer, *J. Inorg. Nucl. Chem.,* **28,** 957 (1966); **29,** 1571, 1851 (1967).

Contribution from the School of Chemical Sciences, University of Illinois, Urbana, Illinois **61801**

Binuclear Ferric Porphyrins Bridged by the Dianions of Hydroquinones

STEPHEN L. KESSEL and DAVID N. HENDRICKSON*'

Received July 23, 1979

Binuclear high-spin ferric porphyrin complexes containing hydroquinone dianion bridging moieties are formed by the reaction of $Fe^{II}(TPP)$ (TPP is the dianion of *meso*-tetraphenylporphyrin) with several p-quinones including p-benzoquinone, **tetrachloro-p-benzoquinone, tetrafluoro-p-benzoquinone,** tetrabromo-p-benzoquinone, duroquinone, and 2,3-dichloro-5,6 dicyano-p-benzoquinone. Two o-quinones, **tetrachloro-o-benzoquinone** and tetrabromo-o-benzoquinone, also react with Fe^{fI}(TPP) to form binuclear ferric complexes with catechol dianion bridging moieties. In the case of the hydroquinone complexes, C-0 IR stretching bands are identified in the range of **1431-1483** cm-' to support the presence of a dianionic hydroquinone bridging unit. ⁵⁷Fe Mössbauer data indicate that the iron ions in both types of complexes are in the high-spin ferric state $(S = \frac{5}{2})$. The $[Fe(TPP)]_2$ (hydroquinone) complexes exhibit weak antiferromagnetic exchange interactions $(\hat{H} = -2J\hat{S}_1\hat{S}_2)$ with *J* values ranging from -3.6 to -15.5 cm⁻¹. The tetrachlorocatecholate complex [Fe(TPP)₁₂(C1₄cat) also exhibits a weak interaction with $J = -2.2$ cm⁻¹.

Introduction

While it has been established that quinones play an integral role in electron-transport chains, interacting perhaps with iron metalloproteins,^{2,3} only two studies dealing with the interaction (1) A. P. Sloan Foundation Fellowship, 1976-1978.

of metalloporphyrins with quinones have appeared in the literature. Hill, Williams, and co-workers reported the results